题目内容
【题目】如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.
(1)求∠D的度数;
(2)求证:以点C,O,B,E为顶点的四边形是菱形.
【答案】(1)∠D=30°;(2)见解析.
【解析】
(1)连接AC,根据切线的性质以及等腰三角形的性质得出∠D=∠ACD=∠ABC,根据圆周角定理得出∠ACB=90°,然后根据三角形内角和定理即可求得∠D的度数;
(2)连接OC、BE,先证得△AOC是等边三角形,然后证得四边形COBE是平行四边形即可证得结论.
(1)解:连接AC,
∵CD是⊙O的切线,
∴∠ACD=∠ABC,
∵AB是直径,
∴∠ACB=90°,
∵CD=CB,
∴∠D=∠ABC,
∴∠D=∠ACD=∠ABC,
∵∠D+∠ACD+∠ABC+∠ACB=90°,
∴∠D=30°;
(2)证明:连接OC、BE,
∵∠D=∠ACD=30°,
∴∠CAB=60°,
∵OA=OC,
∴△AOC是等边三角形,
∴AC=OC,∠AOC=60°,
∵CE∥AB,
∴AC=EB,
∴四边形ACEB是等腰梯形,OC=BE,
∴∠CAB=∠EBA=60°,
∴∠AOC=∠EBA=60°,
∴OC∥BE,
∴四边形COBE是平行四边形,
∵OC=OB,
∴以点C,O,B,E为顶点的四边形是菱形.
【题目】某校举行了“文明在我身边”摄影比赛,已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分步赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
“文明在我身边”摄影比赛成绩统计表
分数段 | 频数 | 频率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x≤100 | b | 0.06 |
合计 | 1 |
根据以上信息解答下列问题:
(1)统计表中a= ,b= ,c= .
(2)补全数分布直方图;
(3)若80分以上的作品将被组织展评,试估计全校被展评作品数量是多少?
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸到球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的概率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);
(2)假如随机摸一次,摸到白球的概率P(白球)=______;
(3)试估算盒子里白色的球有多少个?