题目内容
【题目】如图,菱形中,对角线、相交于点,,,动点从点出发,沿线段以的速度向点运动,同时动点从点出发,沿线段以支向点运动,当其中一个动点停止时另一个动点也随之停止,设运动时间为(单位:)(),以点为圆心,长为半径的⊙M与射线、线段分别交于点、,连接.
(1)求的长(用含有的代数式表示),并求出的取值范围;
(2)当为何值时,线段与⊙M相切?
(3)若⊙M与线段只有一个公共点,求的取值范围.
【答案】(1)BF=t(0<t≤8);(2)t=;(3)0<t≤或<t<8
【解析】
(1)根据MB=MF,AB=AD,推出MF∥AD,由平行线分线段成比例可得即可求出BF的长;
(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,再根据对应边成比例求解即可;
(3)根据画图可知,当0<t≤时,⊙M与线段EN只有一个公共点,当F与N重合后⊙M与线段EN只有一个公共点,求出F与N重合时t的值即可.
(1)连接MF,如图,
∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,OA=OC=6,OB=OD=8,
在Rt△AOB中,,
∵MB=MF,AB=AD,
∴∠ABD=∠ADB=∠MFB,
∴MF∥AD,
∴,
∴,
∴BF=t(0<t≤8).
(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,
∴,
∴,
∴t=,
∴t=s时,线段EN与⊙M相切.
(3)①根据题意可以知道,当0<t≤时,⊙M与线段EN只有一个公共点.
②当F与N重合时,则有t+2t=16,计算得出t=,
根据图像可以知道,<t<8时,⊙M与线段EN只有一个公共点.
综上所述,当0<t≤或<t<8时,⊙M与线段EN只有一个公共点.
练习册系列答案
相关题目