题目内容
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正确的是 (写出所有正确结论的序号).
【答案】①②④.
【解析】
①∵AB是⊙O的直径,弦CD⊥AB,
∴,DG=CG,
∴∠ADF=∠AED,
∵∠FAD=∠DAE(公共角),
∴△ADF∽△AED,故①正确;
②∵=,CF=2,
∴FD=6,
∴CD=DF+CF=8,
∴CG=DG=4,
∴FG=CG﹣CF=2,故②正确;
③∵AF=3,FG=2,
∴AG==,
∴在Rt△AGD中,tan∠ADG==,
∴tan∠E=,故③错误;
④∵DF=DG+FG=6,AD==,
∴S△ADF=DFAG=×6×,
∵△ADF∽△AED,
∴,
∴=,
∴S△AED=,
∴S△DEF=S△AED﹣S△ADF=;
故④正确.
故答案为①②④.
练习册系列答案
相关题目