题目内容
如图是无锡某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场地划分成A、B、C三个不同的票价区.其中与场地边缘MN的视角大于或等于45°,并且距场地边缘MN的距离不超过15米的区域划分为A票区,B票区(如图1所示),剩下的为C票区.
(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要求作出图形,保留作图痕迹,不要求写作法);
(2)如果每个座位所占的平均面积是1.2平方米,请估算A票区有多少个座位;
(3)为提高B区观众的观赛效果,举办方将B区用两个大型的支柱AP、AC撑起一定的角度,其横截面如图2所示.若AB=10米,∠B=30°,∠CPA=∠CAD=75°,求CP的长度.(结果保留根号)
(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要求作出图形,保留作图痕迹,不要求写作法);
(2)如果每个座位所占的平均面积是1.2平方米,请估算A票区有多少个座位;
(3)为提高B区观众的观赛效果,举办方将B区用两个大型的支柱AP、AC撑起一定的角度,其横截面如图2所示.若AB=10米,∠B=30°,∠CPA=∠CAD=75°,求CP的长度.(结果保留根号)
(1)如图所示:
(2)482;(3)
(2)482;(3)
试题分析:(1)可以M、N为圆心,30为半径交于O点如图以线段MN、EF与弧FM、弧EN所围成的区域就是所作的A票区;
(2)求座位就是求三角形EOF,MON和扇形FOM和EON的面积和.那么先求出扇形的半径即可;
(3)先求得BC=,再得到BP=,即可求得结果.
(1)如图所示:
(2)由题意得.
答:A票区有482个座位;
(3)由题意得BC=,则BP=
∴CP=
点评:利用数学知识解决实际问题是中学数学的重要内容,解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
练习册系列答案
相关题目