题目内容
【题目】如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是( )
A.B.C.D.
【答案】D
【解析】
连结OA、OB,如图1,由OA=OB=AB=1可判断△OAB为等边三角形,则∠AOB=60°,根据圆周角定理得∠APB=∠AOB=30°,由于AC⊥AP,所以∠C=60°,因为AB=1,则要使△ABC的最大面积,点C到AB的距离要最大;由∠ACB=60°,可根据圆周角定理判断点C在⊙D上,且∠ADB=120°,如图2,于是当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,从而得到△ABC的最大面积.
解:连结OA、OB,作△ABC的外接圆D,如图1,
∵OA=OB=1,AB=1,
∴△OAB为等边三角形,
∴∠AOB=60°,
∴∠APB=∠AOB=30°,
∵AC⊥AP,
∴∠C=60°,
∵AB=1,要使△ABC的最大面积,则点C到AB的距离最大,
∵∠ACB=60°,点C在⊙D上,
∴∠ADB=120°,
如图2,
当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,且面积为,
∴△ABC的最大面积为.
故选D.
练习册系列答案
相关题目