题目内容

【题目】将一矩形纸片OABC放在平面直角坐标系中,O为原点,点Ax轴上,点Cy轴上,OA=10OC=8,如图在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作E点;

1)求点E的坐标及折痕DB的长;

2)在x轴上取两点MN(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M、点N的坐标。

【答案】(1)E(4,0);DB=5;(2)M(1.5,0);N(6,0);

【解析】

(1)、根据矩形的性质得到BC=OA=10,AB=OC=8,再根据折叠的性质得到BC=BE=10,DC=DE,易得AE=6,则OE=10-6=4,即可得到E点坐标;在Rt△ODE中,设DE=x,则OD=OC-DC=OC-DE=8-x,利用勾股定理可计算出x,再在Rt△BDE中,利用勾股定理计算出BD;(2)、D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,则易得到B′的坐标,D′的坐标,然后利用待定系数法求出直线D′B′的解析式,令y=0,得-2x+12=0,确定N点坐标,也即可得到M点坐标.

(1)、∵四边形OABC为矩形, ∴BC=OA=10,AB=OC=8,

∵△BCD沿BD折叠,使点C恰好落在OAE点上, ∴BC=BE=10,DC=DE,

Rt△ABE中,BE=10,AB=8, ∴AE=6, ∴OE=10-6=4, ∴E点坐标为(4,0);

Rt△ODE中,设DE=x,则OD=OC-DC=OC-DE=8-x, ∴x2=42+(8-x)2,解得x=5,

Rt△BDE中, BD=

(2)、D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,如图,

∴B′的坐标为(10,-8),DD′=MN=4.5,∴D′的坐标为(4.5,3),

设直线D′B′的解析式为y=kx+b,

B′(10,-8),D′(4.5,3)代入得,10k+b=-8,4.5k+b=3,解得k=-2,b=12,

∴直线D′B′的解析式为y=-2x+12, y=0,得-2x+12=0,解得x=6,

∴M(1.5,0);N(6,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网