题目内容
【题目】如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC等于( )
A.130°B.125°C.120°D.115°
【答案】B
【解析】
根据圆周角定理求出∠BOC=2∠A,求出∠A度数,根据三角形内角和定理求出∠ABC+∠ACB,根据三角形的内心得出∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再求出答案即可.
∵在△ABC中,∠BOC=140°,O是外心,
∴∠BOC=2∠A,
∴∠A=70°,
∴∠ABC+∠ACB=180°﹣∠A=110°,
∵I为△ABC的内心,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠IBC+∠ICB==55°,
∴∠BIC=180°﹣(∠IBC+∠ICB)=125°,
故选:B.
练习册系列答案
相关题目
【题目】某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:
女生阅读时间人数统计表
阅读时间(小时) | 人数 | 占女生人数百分比 |
4 | ||
5 | ||
6 | ||
2 |
根据图表解答下列问题:
(1)在女生阅读时间人数统计表中, , ;
(2)此次抽样调查中,共抽取了 名学生,学生阅读时间的中位数在 时间段;
(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?