题目内容
【题目】如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.
(1)求这个梯子的顶端A到地面的距离AC的值;
(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?
【答案】(1)4(2)1
【解析】
(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;
(2)首先求出CD的长,利用勾股定理可求出CE的长,进而得到BE=CE-CB的值.
(1)在Rt△ABC中,由勾股定理得AC2+CB2=AB2,
即AC2+32=52,
所以AC=4(m),
即这个梯子的顶端A到地面的距离AC为4m;
(2)DC=4-1=3(m),DE=5=m,
在Rt△DCE中,由勾股定理得DC2+CE2=DE2,
即32+CE2=52,
所以CE=5(m),
BE=CE-CB=4-3=1(m),
即梯子的底端B在水平方向滑动了1m.
练习册系列答案
相关题目