题目内容
【题目】已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;
点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),
(1)如图(1),当x为何值时,PQ∥AB;
(2)如图(2),若PQ⊥AC,求x;
(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.
【答案】(1)当x=时,PQ∥AB;(2)x=;(3)见解析
【解析】
试题(1)首先得出△PQC为等边三角形,进而表示出PC=4﹣x,CQ=2x,由4﹣x=2x,求出答案;
(2)根据题意得出CQ=PC,即2x=(4﹣x),求出即可;
(3)根据题意得出QH=DP,进而判断出△OQH≌△OPD(AAS),即可得出答案.
解:(1)∵∠C=60°,
∴当PC=CQ时,△PQC为等边三角形,
于是∠QPC=60°=∠B,
从而PQ∥AB,
∵PC=4﹣x,CQ=2x,
由4﹣x=2x,
解得:x=,
∴当x=时,PQ∥AB;
(2)∵PQ⊥AC,∠C=60°,
∴∠QPC=30°,
∴CQ=PC,
即2x=(4﹣x),
解得:x=;
(3)OQ=PO,理由如下:
作QH⊥AD于H,如图(3),
∵AD⊥BC,
∴∠QAH=30°,BD=BC=2,
∴QH=AQ=(2x﹣4)=x﹣2,
∵DP=BP﹣BD=x﹣2,
∴QH=DP,
在△OQH和△OPD中,
,
∴△OQH≌△OPD(AAS),
∴OQ=OP.
练习册系列答案
相关题目