题目内容

【题目】如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.

(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;

(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.

【答案】
(1)

解:∵∠BAC=90°,AB=AC=2,

∴∠B=∠C,

又∵∠FEB=∠FED+∠DEB=∠EQC+∠C,∠DEF=∠C,

∴∠DEB=∠EQC,

∴△BPE∽△CEQ,

设BP为x,CQ为y,

,自变量x的取值范围是0<x<1


(2)

解:∵∠AEF=∠B=∠C,且∠AQE>∠C,

∴∠AQE>∠AEF.

∴AE≠AQ.

当AE=EQ时,

∴∠EAQ=∠EQA,

∵∠AEQ=45°,

∴∠EAQ=∠EQA=67.5°,

∵∠BAC=90°,∠C=45,

∴∠BAE=∠QEC=22.5°.

∵在△ABE和△ECQ中,

∴△ABE≌ECQ(AAS).

∴CE=AB=2.

∴BE=BC﹣EC=

当AQ=EQ时,可知∠QAE=∠QEA=45°,

∴AE⊥BC.

∴点E是BC的中点.

∴BE=

综上,在∠DEF运动过程中,△AEQ能成等腰三角形,此时BE的长为


【解析】(1)根据条件由勾股定理可以求出BC的值,再求出∠DEB=∠EQC,就可以得出△BPE∽△CEQ,由相似三角形的性质就可以得出结论;(2)由∠AEF=∠B=∠C,且∠AQE>∠C可以得出∠AQE>∠AEF.从而有AE≠AQ,再分类讨论,当AE=EQ时和AQ=EQ时根据等腰三角形的性质和全等三角形的性质就可以求出BE的值.
【考点精析】解答此题的关键在于理解全等三角形的性质的相关知识,掌握全等三角形的对应边相等; 全等三角形的对应角相等,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网