题目内容

【题目】已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是多少?
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.

【答案】
(1)

解:①∠AOB=150°,∠BOC=120°,

∴∠AOC=360°﹣120°﹣150°=90°,

∵将△BOC绕点C按顺时针方向旋转60°得△ADC,

∴∠OCD=60°,∠D=∠BOC=120°,

∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,

故答案为:90°;

②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2

如图1,连接OD,

∵△BOC绕点C按顺时针方向旋转60°得△ADC,

∴△ADC≌△BOC,∠OCD=60°,

∴CD=OC,∠ADC=∠BOC=120°,AD=OB,

∴△OCD是等边三角形,

∴OC=OD=CD,∠COD=∠CDO=60°,

∵∠AOB=150°,∠BOC=120°,

∴∠AOC=90°,

∴∠AOD=30°,∠ADO=60°,

∴∠DAO=90°,

在Rt△ADO中,∠DAO=90°,

∴OA2+OB2=OD2

∴OA2+OB2=OC2


(2)

解:①当α=β=120°时,OA+OB+OC有最小值.

如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,

∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,

∴O′C=OC,O′A′=OA,A′C=BC,

∠A′O′C=∠AOC.

∴△OC O′是等边三角形,

∴OC=O′C=OO′,∠COO′=∠CO′O=60°,

∵∠AOB=∠BOC=120°,

∴∠AOC=∠A′O′C=120°,

∴∠BOO′=∠OO′A′=180°,

∴四点B,O,O′,A′共线,

∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;

②∵∠AOB=∠BOC=120°,

∴∠AOC=120°,

∴O为△ABC的中心,

∵四点B,O,O′,A′共线,

∴BD⊥AC,

∵将△AOC绕点C按顺时针方向旋转60°得△A′O′C,

∴A′C=AC=BC,

∴A′B=2BD,

在Rt△BCD中,BD= BC=

∴A′B=

∴当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=


【解析】(1)①根据周角的定义得到∠AOC=360°﹣120°﹣150°=90°,由于将△BOC绕点C按顺时针方向旋转60°得△ADC,于是得到∠OCD=60°,∠D=∠BOC=120°,根据四边形的内角和即可得到结论;②如图1,连接OD,由于△BOC绕点C按顺时针方向旋转60°得△ADC,得到△ADC≌△BOC,∠OCD=60°,根据全等三角形的性质得到CD=OC,∠ADC=∠BOC=120°,AD=OB,推出△OCD是等边三角形,根据等边三角形的性质得到OC=OD=CD,∠COD=∠CDO=60°,由于∠AOB=150°,∠BOC=120°,得到∠AOC=90°,求得∠AOD=30°,∠ADO=60°,根据勾股定理即可得到结论;(2)①如图2,由旋转的性质得到O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC..推出△OC O′是等边三角形,根据等边三角形的性质得到OC=O′C=OO′,∠COO′=∠CO′O=60°,由于∠AOB=∠BOC=120°,得到∠AOC=∠A′O′C=120°,推出四点B,O,O′,A′共线,即可得到结论,②根据①的结论即可得到结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网