题目内容
【题目】阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:
(1)数轴上表示﹣3和1两点之间的距离是 ,数轴上表示﹣2和3的两点之间的距离是 ;
(2)数轴上表示x和﹣1的两点之间的距离表示为 ;
(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.
【答案】(1)4,5;(2)|x+1|;(3)5.
【解析】
(1)根据在数轴上A、B两点之间的距离为AB=|a﹣b|即可求解;
(2)根据在数轴上A、B两点之间的距离为AB=|a﹣b|即可求解;
(3)根据绝对值的性质去掉绝对值号,然后计算即可得解.
(1)|1﹣(﹣3)|=4;|3﹣(﹣2)|=5;
故答案为:4;5;
(2)|x﹣(﹣1)|=|x+1|或|(﹣1)﹣x|=|x+1|,
故答案为:|x+1|;
(3)有最小值,
当x<﹣3时,|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣2x﹣1,
当﹣3≤x≤2时,|x﹣2|+|x+3|=2﹣x+x+3=5,
当x>2时,|x﹣2|+|x+3|=x﹣2+x+3=2x+1,
在数轴上|x﹣2|+|x+3|的几何意义是:表示有理数x的点到﹣3及到2的距离之和,所以当﹣3≤x≤2时,它的最小值为5.
练习册系列答案
相关题目