题目内容
【题目】某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.
(1)求第一班车离入口处的路程y(米)与时间x(分)函数表达式.并写出x的取值范围;
(2)求第一班车从入口处到达塔林所需的时间;
(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)
【答案】(1)y=150x﹣3000(20≤x≤38);(2)第一班车从入口处到达塔林所需时间10分钟;(3)比他在塔林游玩结束后立即步行到草甸提早了7分钟.
【解析】
(1)设y=kx+b,运用待定系数法求解即可;
(2)把y=1500代入(1)的结论即可;
(3)设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
(1)由题意得,可设函数表达式为:y=kx+b(k≠0),
把(20,0),(38,2700)代入y=kx+b,
得,
解得,
∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x﹣3000(20≤x≤38);
(2)把y=1500代入y=150x﹣3000,解得x=30,
30﹣20=10(分),
∴第一班车从入口处到达塔林所需时间10分钟;
(3)设小聪坐上了第n班车,则
30﹣25+10(n﹣1)≥40,解得n≥4.5,
∴小聪坐上了第5班车,
等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),
步行所需时间:1200÷(1500÷25)=20(分),
20﹣(8+5)=7(分),
∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.