题目内容
【题目】如图1,在△ABC中,ABAC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF∠A,另一边EF交AC于点F.
(1)求证:四边形ADEF为平行四边形;
(2)当D为AB中点时,四边形ADEF的形状为 (直接写出结论);
(3)延长图1中的DE到点G,使EGDE,连接AE,AG,FG,得到图2.若ADAG,判断四边形AEGF的形状,并说明理由.
【答案】(1)见解析;(2)菱形;(3)四边形AEGF是矩形,理由见解析
【解析】
(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;
(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;
(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.
(1)证明:∵DE∥AC,
∴∠BDE=∠A,
∵∠DEF=∠A,
∴∠DEF=∠BDE,
∴AD∥EF,又∵DE∥AC,
∴四边形ADEF为平行四边形;
(2)解:ADEF的形状为菱形,
理由如下:∵点D为AB中点,
∴AD=AB,
∵DE∥AC,点D为AB中点,
∴DE=AC,
∵AB=AC,
∴AD=DE,
∴平行四边形ADEF为菱形,
故答案为:菱形;
(3)四边形AEGF是矩形,
理由如下:由(1)得,四边形ADEF为平行四边形,
∴AF∥DE,AF=DE,
∵EG=DE,
∴AF∥DE,AF=GE,
∴四边形AEGF是平行四边形,
∵AD=AG,EG=DE,
∴AE⊥EG,
∴四边形AEGF是矩形.
练习册系列答案
相关题目