题目内容
【题目】如图,已知点A是双曲线在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )
A.n=﹣2m
B.n=
C.n=﹣4m
D.n=
【答案】B
【解析】解:由反比例函数的性质可知,A点和B点关于原点对称,
∵点C的坐标为(m,n),
∴点A的坐标为(,n),
∴点B的坐标为(﹣,﹣n),
根据图象可知,B点和C点的横坐标相同,
∴﹣=m,即n=﹣.
故选:B.
首先根据点C的坐标为(m,n),分别求出点A的坐标、点B的坐标;然后根据AO、BO所在的直线的斜率相同,求出m,n满足的关系式即可.
练习册系列答案
相关题目