题目内容
【题目】如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).
(1)求抛物线的解析式;
(2)求点O到直线AB的距离;
(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.
【答案】
(1)
解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,
将B点坐标代入函数解析式,得
(5﹣1)2a﹣1=3,
解得a=.
故抛物线的解析式为y=(x﹣1)2﹣1
(2)
由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(5﹣1)2+(3+1)2=32,
OA2+AB2=OB2,
∴∠OAB=90°,
O到直线AB的距离是OA=
(3)
设M(a,b),N(a,0)
当y=0时,(x﹣1)2﹣1=0,
解得x1=3,x2=﹣1,
D(3,0),DN=3﹣a.
①当△MND∽△OAB时,=,即=,
化简,得4b=a﹣3 ①
M在抛物线上,得b=(a﹣1)2﹣1 ②
联立①②,得,
解得a1=3(不符合题意,舍),a2=﹣2,b=,
M1(﹣2,),
当△MND∽△BAO时,=,即=,
化简,得b=12﹣4a ③,
联立②③,得,
解得a1=3(不符合题意,舍),a2=﹣17,b=12﹣4×(﹣17)=80,
M2(﹣17,80).
综上所述:当△DMN与△OAB相似时,点M的坐标(﹣2,),(﹣17,80)
【解析】(1)根据待定系数法,可得抛物线的解析式;
(2)根据勾股定理,可得OA2、OB2、AB2的长,根据勾股定理的逆定理,可得∠OAB等于90°,根据点到直线的距离的定义,可得答案;
(3)根据抛物线上的点满足函数解析式,可得方程②,根据相似三角形的性质,可得方程①③,根据解方程组,可得M点的坐标
【题目】在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表: 该班学生参加各项服务的频数、频率统计表:
服务类别 | 频数 | 频率 |
文明宣传员 | 4 | 0.08 |
文明劝导员 | 10 | |
义务小警卫 | 8 | 0.16 |
环境小卫士 | 0.32 | |
小小活雷锋 | 12 | 0.24 |
请根据上面的统计图表,解答下列问题:
(1)该班参加这次公益活动的学生共有名;
(2)请补全频数、频率统计表和频数分布直方图;
(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.