题目内容
【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2 .
【答案】
(1)证明:∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,
∴∠QAF=90°,
∵∠EAF=45°,
∴∠QAE=45°,
∴EA是∠QED的平分线
(2)证明:∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,
∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
在△AQE和△AFE中
,
∴△AQE≌△AFE(SAS),
∴QE=EF,
在Rt△QBE中,
QB2+BE2=QE2,
则EF2=BE2+DF2.
【解析】(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而利用勾股定理得出答案.此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确得出△AQE≌△AFE(SAS)是解题关键.
练习册系列答案
相关题目