题目内容
【题目】如图,菱形ABCD的周长为16,∠ADC=120,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是___________.
【答案】2
【解析】
连接BD,根据菱形的对角线平分一组对角可得∠BDA=∠ADC=60°,然后判断出△ABD是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB的最小值=DE,然后根据等边三角形的性质求出DE即可得解.
解:如图,连接BD,
∵四边形ABCD是菱形,
∴∠BDA=∠ADC=×120°=60°,
∵AB=AD(菱形的邻边相等),
∴△ABD是等边三角形,
连接DE,∵B、D关于对角线AC对称,
∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,
∵E是AB的中点,
∴DE⊥AB,
∵菱形ABCD周长为16,
∴AD=16÷4=4,
∴DE=.
故答案为:2.
练习册系列答案
相关题目
【题目】某村为了尽早摆脱贫穷落后的现状,积极响应国家号召,15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公顷需要人数和投入资金如下表:
作物种类 | 每公顷所需人数/人 | 每公顷投入资金/万元 |
蔬菜 | 4 | 2 |
水果 | 5 | 3 |
在现有条件下,这15位村民应承包多少公顷土地,怎样安排能使每人都有事可做,并且资金正好够用?