题目内容
【题目】在一次“构造勾股数”的探究性学习中,老师给出了下表:
其中、为正整数,且.
()观察表格,当, 时,此时对应的、、的值能否为直角三角形三边的长?说明你的理由.
()探究, , 与、之间的关系并用含、的代数式表示: __________, __________, __________.
()以, , 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.
【答案】(1)是,理由见解析;(2), , ;(3)是直角三角形,理由见解析
【解析】试题分析:(1)计算出a、b、c的值,根据勾股定理的逆定理判断即可;
(2)根据给出的数据总结即可;
(3)分别计算出a2、b2、c2,根据勾股定理的逆定理进行判断.
试题解析:
解:(1)当m=2,n=1时,a=5、b=4、c=3,
∵32+42=52,
∴a、b、c的值能为直角三角形三边的长;
(2)观察得,a=m2+n2,b=2mn,c=m2-n2;
(3)以a,b,c为边长的三角形一定为直角三角形,
∵a2=(m2+n2)2=m4+2m2n2+n4,
b2+c2=m4-2m2n2+n4+4m2n2= m4+2m2n2+n4,
∴a2=b2+c2,
∴a,b,c为边长的三角形一定为直角三角形.
练习册系列答案
相关题目