题目内容
【题目】如图,已知四边形ABCD是正方形,△AEF是等边三角形,E,F分别位于DC边和BC边上.
(1)求∠DAE的度数;
(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;
(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.
【答案】
(1)解:∵四边形ABCD是正方形,
∴AB=AD,AF=AE,∠B=∠D=90°,
在Rt△ABF与Rt△ADE, ,
∴Rt△ABF≌Rt△ADE,
∴∠DAE=∠BAF
又∠DAE+∠BAF=∠BAD﹣∠EAF=90°﹣60°=30°
∴∠DAE=15°;
(2)解:设BF=x,由(1)可知DE=BF=x,则CF=CE=1﹣x
∴AB2+BF2=AF2,CF2+CE2=EF2,AF=EF,
即:12+x2=2(1﹣x)2
∴x1=2+ ,x2=2 ,
∵0<x<1,
∴x1=2+ (舍去),x=2 ,
∴S△AEF=S四边形ABCD﹣2S△ABF﹣S△EFC=12﹣2× 1×(2﹣ )﹣ ( ﹣1)2=2 ﹣3;
(3)解:依题意,点A可落在AB边上或BC边上.
①当点A落在AB边上时,设此时点A的对应点为M,则EA=EM,
∵∠EAB=75°,
∴∠AME=75°,
∴m=∠AEM=180°﹣75°﹣75°=30°,
②当点A落在边BC上时,
∵EA=EF,点A旋转后与点F重合,
∴m=∠AEF=60°,
综上,m=30°或m=60°.
【解析】(1)由正方形性质得AB=AD,AF=AE,∠B=∠D=90°,再根据直角三角形的判定得Rt△ABF≌Rt△ADE(HL),由全等三角形的性质得∠DAE=∠BAF,由等边三角形和正方形的性质得∠DAE的度数.
(2)设BF=x,由(1)知DE=BF=x,则CF=CE=1﹣x,由勾股定理得AB2+BF2=AF2,CF2+CE2=EF2,AF=EF,即12+x2=2(1﹣x)2(0<x<1),
求出x=2 ,再由S△AEF=S四边形ABCD﹣2S△ABF﹣S△EFC求出即可.
(3)依题分两种情况来分析:①当点A落在AB边上时,设此时点A的对应点为M,则EA=EM;②当点A落在边BC上时;根据旋转的性质和三角形内角和定理即可求出答案.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高,以及对等边三角形的性质的理解,了解等边三角形的三个角都相等并且每个角都是60°.
【题目】随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
收费方式 | 月使用费/元 | 包时上网时间/h | 超时费/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n=
(2)写出yA与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?