题目内容
【题目】如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为 .
【答案】2或2 或4
【解析】解:如图,连接AC.
∵BC∥AD,∠DCB=120°,
∴∠D+∠DCB=180°,
∴∠D=60°,
∵DC=DA,
∴△ACD是等边三角形,
∴∠DAC=60°,
∵AB⊥BC,
∴∠CBA=∠BAD=90°,
∴∠BAC=30°,
∴当P3与A重合时,∠BP3C=30°,此时CP3=4,
作CP2⊥AD于P2 , 则四边形BCP2A是矩形,
易知∠CP2B=30°,此时CP2=2 ,
当CB=CP1时,∠CP1B=∠CBP1=30°,此时CP1=2,
综上所述,CP的长为2或2 或4.
故答案为2或2 或4.
如图,连接AC.首先证明△ACD是等边三角形,分三种情形讨论即可解决问题.
练习册系列答案
相关题目
【题目】为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:
甲:8,7,9,8,8;乙:9,6,10,8,7;
将下表填写完整:
平均数 | 中位数 | 方差 | |
甲 | ______ | 8 | ______ |
乙 | 8 | ______ | 2 |
根据以上信息,若你是教练,你会选择谁参加射击比赛,理由是什么?
若乙再射击一次,命中8环,则乙这六次射击成绩的方差会______填“变大”或“变小”或“不变”