题目内容
【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为6,弧DE的长度为2π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
【答案】
(1)
解:连接OD、OE,
设∠EOD=n°,
∵弧DE的长度为2π,
∴2π= ,
∴n=60°,
∴△EOD是等边三角形,
∴∠ODE=60°,
∵AB是⊙O的切线,
∴∠ODA=90°
∴∠EAD=30°,
∴∠B=∠EAD,
∴ED∥BC,
(2)
解:连接FD,
由(1)可知ED∥BC,
∴∠AED=∠C=90°,
∴由圆周角定理可知:FD是⊙O的直径,
∴∠AFD=30°,
∴cos∠AFD= ,DF=12
∴AF=8 ,
∵cos∠AFD= ,
∴EF=6 ,
∴CE=AF=8 ,
∴AE=CF=2 ,
∴AC=10 ,
∵tanB= ,
∴BC=30,
【解析】(1)连接OD、OE,根据弧DE的长度为2π,从而可求出∠EOD的度数,根据切线的性质即可求出∠EDA的度数,从可得出∠B=∠EAD;(2)连接FD,由圆周角定理可知FD是⊙O的直径,从而可知∠AFD=30°,从而可求出AF、AE的长度,再由tanB= 即可求出BC的长度.
练习册系列答案
相关题目