题目内容

【题目】已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:

abc>0;

②该抛物线的对称轴在x=﹣1的右侧;

③关于x的方程ax2+bx+c+1=0无实数根;

≥2.

其中,正确结论的个数为(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

a>0可知抛物线开口向上,再根据抛物线与x轴最多有一个交点可c>0,由此可判断①,根据抛物线的对称轴公式x=﹣可判断②,由ax2+bx+c≥0可判断出ax2+bx+c+1≥1>0,从而可判断③,由题意可得a﹣b+c>0,继而可得a+b+c≥2b,从而可判断④.

①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,

∴抛物线与y轴交于正半轴,

c>0,

abc>0,故①正确;

②∵0<2a≤b,

>1,

<﹣1,

∴该抛物线的对称轴在x=﹣1的左侧,故②错误;

③由题意可知:对于任意的x,都有y=ax2+bx+c≥0,

ax2+bx+c+1≥1>0,即该方程无解,故③正确;

④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,

∴当x=﹣1时,y>0,

a﹣b+c>0,

a+b+c≥2b,

b>0,

≥2,故④正确,

综上所述,正确的结论有3个,

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网