题目内容
【题目】如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.
(1)求点D的铅垂高度(结果保留根号);
(2)求旗杆AB的高度(结果保留根号).
【答案】(1)米(2)(4+1.5)米
【解析】
(1)延长ED交射线BC于点H.由题意得DH⊥BC.解直角三角形即可得到结论;
(2)过点E作EF⊥AB于F.得到∠AEF=30°.推出四边形FBHE为矩形.根据矩形的性质得到EF=BH=BC+CH=9.解直角三角形即可得到结论.
(1)延长ED交射线BC于点H.
由题意得:DH⊥BC.
在Rt△CDH中,∠DHC=90°,tan∠DCH=i=1:,∴∠DCH=30°,∴CD=2DH.
∵CD=2,∴DH,CH=3.
答:点D的铅垂高度是米.
(2)过点E作EF⊥AB于F.
由题意得:∠AEF即为点E观察点A时的仰角,∴∠AEF=30°.
∵EF⊥AB,AB⊥BC,ED⊥BC,∴∠BFE=∠B=∠BHE=90°,∴四边形FBHE为矩形,∴EF=BH=BC+CH=9,FB=EH=ED+DH=1.5.
在Rt△AEF中,∠AFE=90°,AF=EFtan∠AEF=9,∴AB=AF+FB=31.5.
答:旗杆AB的高度约为(41.5)米.
练习册系列答案
相关题目