题目内容
【题目】关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①;cos(α+β)=cosαcosβ﹣sinαsinβ②;tan(α+β)=③
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,
如:tan105°=tan(45°+60°)====﹣(2+).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.
【答案】建筑物CD的高为84米.
【解析】试题分析:先由俯角β的正切值及BC求得AB,再由俯角α的正切值及BC求得A、D两点垂直距离.CD的长由二者相减即可求得.
试题解析:由于α=60°,β=75°,BC=42,
则AB=BCtanβ=42tan75°=42× =42×,
A、D垂直距离为BCtanα=42,
∴CD=AB﹣42=84(米).
答:建筑物CD的高为84米.
练习册系列答案
相关题目