题目内容
【题目】已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.
(1)根据题意,利用直尺和圆规补全图形;
(2)证明:l垂直平分AE.
【答案】(1)见解析;(2)证明见解析.
【解析】
(1)根据题意进行作图即可;
(2)根据题意可证明△ACD≌△ECD,再利用全等的性质及等腰三角形“三线合一”的性质即可证明结论.
解:(1)如图所示;
(2)证明:由题意可知,AC=AD=AB,CE=ED=AB,
∴AC=CE,AD=DE,
又∵CD=CD,
∴△ACD≌△ECD,
∴∠ACD=∠ECD,
又∵AC=CE,
∴CO垂直平分AE,
∴l垂直平分AE.
练习册系列答案
相关题目