题目内容
【题目】我们把满足下面条件的△ABC称为“黄金三角形”:
①△ABC是等腰三角形;②在三角形的某条边上存在不与顶点重合的点P,使得P与P所在边的对角顶点连线把△ABC分成两个不全等的等腰三角形.
(1)△ABC中,AB=AC,∠A:∠C=1:2,可证△ABC是“黄金三角形”,此时∠A的度数为_________.
(2)△ABC中,AB=AC, ∠A为钝角.若△ABC为“黄金三角形”,则∠A的度数为________.
【答案】
【解析】
(1)根据等腰三角形的性质及三角形内角和求解即可;
(2)画出图形,根据等腰三角形性质、外角定理及三角形内角和即可求出答案.
解:(1)∵∠A:∠C=1:2,
∴设∠A=x,则∠C=2x,
∵AB=AC,
∴∠B=∠C=2x,
∵∠A+∠B+∠C=180°,
∴x+2x+2x=180°,
∴x=36°,即∠A=36°;
(2)△ABC如图所示,
∵△ABC为“黄金三角形”,
∴AB=AC,AD=BD,AC=CD,
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=∠BAD+∠CAD=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°,
故答案为:36°; 108°.
练习册系列答案
相关题目