题目内容
【题目】如图,O,D,E三点在同一直线上,∠AOB=90°.
(1)图中∠AOD的补角是_____,∠AOC的余角是_____;
(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.
【答案】∠AOE ∠BOC
【解析】
(1)结合图形,根据补角和余角的定义即可求得;
(2)由∠AOC=35°,∠AOB=90°可求得∠BOC的度数,再根据角平分线的定义求得∠BOE的度数,再根据邻补角的定义即可求得∠BOD的度数.
(1)图中∠AOD的补角是∠AOE,∠AOC的余角是∠BOC,
故答案为: ∠AOE, ∠BOC;
(2)∵∠AOC=35°,∠AOB=90°,
∴∠BOC=∠AOB-∠AOC=90°-35°=55°,
∵OB平分∠COE,
∴∠BOE=∠BOC=55°,
∴∠BOD=180°-∠BOE=180°﹣55°=125°.
练习册系列答案
相关题目