搜索
题目内容
如图,在正三角形
中,
,
,
分别是
,
,
上的点,
,
,
,则
的面积与
的面积之比等于
.
试题答案
相关练习册答案
1:3
分析:首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:
,又由相似三角形的面积比等于相似比的平方,即可求得结果.
解答:解:∵△ABC是正三角形,
∴∠B=∠C=∠A=60°,
∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠AFE=∠CED=∠BDF=90°,
∴∠BFD=∠CDE=∠AEF=30°,
∴∠DFE=∠FED=∠EDF=60°,
=
,
∴△DEF是正三角形,
∴BD:DF=1:
①,
BD:AB=1:3②,
△DEF∽△ABC,
①÷②,
=
,
∴DF:AB=1:
,
∴△DEF的面积与△ABC的面积之比等于1:3.
故答案为:1:3.
练习册系列答案
名校课堂内外系列答案
课堂点睛系列答案
打好基础高效课堂金牌作业本系列答案
一本系列答案
创新课堂创新作业本系列答案
倍速课时学练系列答案
当堂练新课时同步训练系列答案
教与学课程同步讲练系列答案
文敬图书课时先锋系列答案
夺冠百分百初中精讲精练系列答案
相关题目
、(本题8分)如图,在△ABC中,DE//BC,AD:DB="3:2 "
小题1: (1)求
的值小题2: (2)求
的值
在平行四边形ABCD中,E、F是对角线BD上的点,且BE=EF=FD,连接AE交BC于点M,连接MF交AD于点H,则△AMH和平行四边形ABCD的面积比为
(12分) 如图,在矩形ABCD中,
,
,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动。如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与
相似?
如图,□ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。
小题1:写出图中每一对你认为全等的三角形
小题2:选择(1)中的任意一对进行证明。
如图△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,
且AD⊥CD,E为BC中点,则DE=( )
A 3cm B 5cm C 2.5cm D 1.5cm
如图,⊿ABC在平面直角坐标系内三顶点坐标分别为
小题1:先画出⊿ABC;
小题2:以B为位似中心,画出⊿A
1
B
1
C
1
,使⊿A
1
B
1
C
1
与⊿ABC相似且相似比为2:1
(满分l2分)小林想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如图,小林边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小林落在墙上的影子高度CD="1.2" m,CE="0.8" m,CA="30" m(点A,E,C在同一直线上).已知小林的身高EF是1.7 m,请你帮小林求出楼高AB.(结果精确到0.1 m)
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总