题目内容

【题目】如图,点A是双曲线y=上一点,过AABx轴,交直线y=﹣x于点B,点Dx轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,ABD的面积为,tanABD=,则k的值为(  )

A. ﹣2 B. ﹣3 C. D.

【答案】A

【解析】

如图作BH⊥ODH.延长BAy轴于E.由tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH=BE=9m,OD=4m,推出C(-6m,m),推出A(-m,9m),由△ABD的面积为,推出m×9m=,可得m2=,推出k=-6m×m=-2;

如图作BH⊥OD于H.延长BA交y轴于E.

∵AB∥DH,
∴∠ABD=∠BDH,
∴tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH=BE=9m,OD=4m,
∴C(-6m,m),
∴A(-m,9m),
∵△ABD的面积为
m×9m=
∴m2=
∴k=-6m×m=-2,
故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网