题目内容
【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.
【答案】(1)△ABC是等腰三角形,理由见解析;(2)△ABC是直角三角形.理由见解析.
【解析】
试题(1)由方程解的定义把x=﹣1代入方程得到a﹣b=0,即a=b,于是由等腰三角形的判定即可得到△ABC是等腰三角形;
(2)由判别式的意义得到△=0,整理得,然后由勾股定理的逆定理得到△ABC是直角三角形.
试题解析:解:(1)△ABC是等腰三角形.理由如下:
∵x=﹣1是方程的根,∴(a+c)×1﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;
(2)△ABC是直角三角形.理由如下:
∵方程有两个相等的实数根,∴△=,∴,∴,∴△ABC是直角三角形.
练习册系列答案
相关题目