题目内容
【题目】在平面直角坐标系中,平行四边形的顶点的坐标分别是, ,点把线段三等分,延长分别交于点,连接, 则下列结论:; ③四边形的面积为;④,其中正确的有( ).
A. B. C. D.
【答案】C
【解析】
① 根据题意证明,得出对应边成比例,再根据把线段三等分,证得,即可证得结论;
② 延长BC交y轴于H,证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;
③ 利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断;
④ 根据勾股定理,计算出OB的长,根据三等分线段OB可得结论.
作AN⊥OB于点N,BM⊥x轴于点M,如图所示:
在平行四边形OABC中,点的坐标分别是, ,
∴
又∵把线段三等分,
∴
又∵,
∴
∴
∴
即,①结论正确;
∵,
∴
∴平行四边形OABC不是菱形,
∴
∵
∴
∴
∴
故△OFD和△BEG不相似,故②错误;
由①得,点G是AB的中点,
∴FG是△span>OAB的中位线,
∴,
又∵把线段三等分,
∴
∵
∴
∵
∴四边形DEGH是梯形
∴,故③正确;
,故④错误;
综上:①③正确,
故答案为C.
练习册系列答案
相关题目