题目内容
【题目】如图,已知△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.
【答案】证明见解析.
【解析】试题分析:根据等边三角形的性质,可得AB与BC的关系,BD、BE、DE的关系,根据三角形全等的判定,可得△ABE与△CBD的关系,根据全等三角形的性质,可得对应边相等,根据线段的和差,等量代换,可得证明结果.
试题解析:
△ABC和△BDE都是等边三角形
∴AB=BC,BE=BD=DE(等边三角形的边相等),
∠ABC=∠EBD=60°(等边三角形的角是60°).
∴∠ABC﹣∠EBC=∠EBD﹣∠EBC
∠ABE=CBD (等式的性质),
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS)
∴AE=DC(全等三角形的对应边相等).
∵AD﹣DE=AE(线段的和差)
∴AD﹣BD=DC(等量代换).
练习册系列答案
相关题目