题目内容
【题目】抛物线y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.
(1)求D点坐标;
(2)若∠PBA= ∠OBC,求点P的坐标;
(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.
【答案】
(1)
解:∵y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,
∴y= (x+4)(x﹣2)= (x2+2x﹣8)= (x+1)2﹣3.
∴D(﹣1,﹣3).
(2)
解:在x轴上点E(﹣2,0),连接CE,并延长CE交PB于点F,过点F作FG⊥x轴,垂足为G.
∵点E与点B关于y轴对称,
∴∠OBC=∠OEC.
∴∠OBC=∠GEF.
∵∠PBA= ∠OBC,
∴∠PBA=∠EFB.
∴EF=EB=4.
∵OE=2,OC= ,
∴EC= .
∵GF∥OC,
∴△FGE∽△COE.
∴ = = ,即 = = ,
解得:FG= ,EG= ,
∴F(﹣ , ).
设BP的解析式为y=kx+b,将点F和点B的坐标代入得: ,
解得:k=﹣ ,b=1,
∴直线BP的解析式为y=﹣ x+1.
将y=﹣ x+1与y= x2+ x﹣ 联立,
解得:x=﹣ ,x=2(舍去),
∴y= .
∴P(﹣ , );
(3)
解:设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,
∴﹣k+b=0,
∴b=k,
∴y=kx+k.
由 得: x2+( ﹣k)﹣ ﹣k=0
∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,
解得:x1=﹣1,x2=3k﹣1,
∵点M是线段PQ的中点,
∴由中点坐标公式的点M( k﹣1, k2).
假设存在这样的N点如图2,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由 ,解得:x1=﹣1,x2=3k﹣1,
∴N(3k﹣1,3k2﹣3).
∵四边形DMPN是菱形,
∴DN=DM,
∴(3k)2+(3k2)2=( )2+ k2+3)2,
整理得:3k4﹣k2﹣4=0,
∵k2+1>0,
∴3k2﹣4=0,
解得k=± ,
∵k<0,
∴k=﹣ ,
∴P(﹣3 ﹣1,6),M(﹣ ﹣1,2),N(﹣2 ﹣1,1).
∴PM=DN=2 ,
∵PM∥DN,
∴四边形DMPN是平行四边形,
∵DM=DN,
∴四边形DMPN为菱形,
∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2 ﹣1,1).
【解析】(1)抛物线的解析式为y= (x+4)(x﹣2),然后利用配方法可求得点D的坐标;(2)在x轴上点E(﹣2,0),连接CE,并延长CE交PB与点F,过点F作FG⊥x轴,垂足为G.首先证明EF=EB=4,然后证明△FGE∽△COE,依据相似三角形的性质可得到FG= ,EG= ,故可得到点F的坐标,然后可求得BP的解析式,最后可求得直线与抛物线的交点坐标即可;(3)设P(x1 , y1)、Q(x2 , y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法,以及对菱形的判定方法的理解,了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.
【题目】为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.
女生进球个数的统计表
进球数(个) | 人数 |
0 | 1 |
1 | 2 |
2 | x |
3 | y |
4 | 4 |
5 | 2 |
(1)求这个班级的男生人数;
(2)补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;
(3)该校共有学生1880人,请你估计全校进球数不低于3个的学生大约有人.