题目内容
【题目】如图,已知点P是⊙O外一点,PB切⊙O于点B,BA 垂直OP于C,交⊙O于点A,连接PA、AO,延长AO,交⊙O于点E.
(1)求证:PA是⊙O的切线;
(2)若tan∠CAO= ,且OC=4,求PB的长.
【答案】
(1)证明:连接OB,则OA=OB,
∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,
在△PAO和△PBO中,
∵ ,
∴△PAO≌△PBO(SSS),
∴∠PAO=∠PBO,
∵PB为⊙O的切线,B为切点,
∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,
∴PA是⊙O的切线;
(2)解:∵tan∠CAO= = ,且OC=4,
∴AC=6,
∴AB=12
在Rt△ACO中,AO= = =2 .
显然△ACO∽△PAO,
∴ = ,即 = ,
∴PA=3 ,
∴PB=PA=3 .
【解析】(1)证明△PAO≌△PBO,根据全等三角形的对应角相等证得∠PAO=∠PBO,则∠PBO=90°,根据切线的判定定理证得;(2)在Rt△ACO中,利用勾股定理求得OA的长,然后根据△ACO∽△PAO,利用相似三角形的对应边的比相等求解.
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)).
练习册系列答案
相关题目