题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下 列结论中正确的个数有( ) ①4a+b=0;
②9a+3b+c<0;
③若点A(﹣3,y1),点B(﹣ ,y2),点C(5,y3)在该函数图象上,则y1<y3<y2
④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:由抛物线的对称轴为x=2可得﹣ =2,即4a+b=0,故①正确; 由抛物线的对称性知x=0和x=4时,y>0,
则x=3时,y=9a+3b+c>0,故②错误;
∵抛物线的开口向下,且对称轴为x=2,
∴抛物线上离对称轴水平距离越小,函数值越大,
∵点A到x=2的水平距离为5,点B到对称轴的水平距离为2.5,点C到对称轴的水平距离为3,
∴y1<y3<y2 , 故③正确;
令y=a(x+1)(x﹣5),
则抛物线y=a(x+1)(x﹣5)与y=ax2+bx+c形状相同、开口方向相同,且与x轴的交点为(﹣1,0)、(3,0),
函数图象如图所示,

由函数图象可知方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,
∴x1<﹣1<5<x2 , 故④正确;
故选:C.
【考点精析】掌握二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网