题目内容
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F.求证:(1)△ABF∽△ACE;(2)△AEF∽△ACB.
证明:(1)∵CE⊥AB于E,BF⊥AC于F,
∴∠AFB=∠AEC,∠A为公共角,
∴△ABF∽△ACE(两角对应相等的两个三角形相似).
(2)由(1)得AB:AC=AF:AE,∠A为公共角,
∴△AEF∽△ACB(两边对应成比例且夹角相等的两个三角形相似).
∴∠AFB=∠AEC,∠A为公共角,
∴△ABF∽△ACE(两角对应相等的两个三角形相似).
(2)由(1)得AB:AC=AF:AE,∠A为公共角,
∴△AEF∽△ACB(两边对应成比例且夹角相等的两个三角形相似).
练习册系列答案
相关题目