题目内容
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点(点A在点B的左侧),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,求线段MN的最大值;
(3)是否存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形?若存在,请直接写出m的值;若不存在,请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)线段MN最大值为;(3)存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形,此时m的值为或.
【解析】
(1)根据点A、C的坐标,利用待定系数法即可求出抛物线的解析式;
(2)由二次函数图象上点的坐标特征可找出点B的坐标,根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,设点P的坐标为(m,0)(0≤m≤3),点M的坐标为(m,﹣m2+2m+3),点N的坐标为(m,﹣m+3),由此即可得出MN=﹣m2+3m,利用配方法即可求出线段MN的最大值;
(3)根据平行四边形的性质可得出MN=OC,分m<0或m>3以及0≤m≤3两种情况,即可得出关于m的一元二次方程,解之即可得出结论.
(1)将A(﹣1,0)、C(0,3)代入y=﹣x2+bx+c中,
,解得:,
∴抛物线的解析式为y=﹣x2+2x+3.
(2)当y=﹣x2+2x+3=0时,x1=﹣1,x2=3,
∴点B的坐标为(3,0).
设直线BC的解析式为y=kx+b(k≠0),
将B(3,0)、C(0,3)代入y=kx+b中,
,,解得:,
∴直线BC的解析式为y=﹣x+3.
设点P的坐标为(m,0)(0≤m≤3),点M的坐标为(m,﹣m2+2m+3),
点N的坐标为(m,﹣m+3),
∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,
∴当m=,线段MN取最大值,最大值为.
(3)∵MN∥CO,
∴当MN=CO时,以点C、O、M、N为顶点的四边形是平行四边形.
∵点O(0,0)、C(0,3),
∴OC=3,
∴|﹣m2+3m|=3,
当m<0或m>3时,有m2﹣3m=3,
解得:m1=,m2=;
当0≤m≤3时,有﹣m2+3m=3,
∵△=(﹣3)2﹣4×1×3=﹣3<0,
∴此时方程无解.
综上所述:存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形,此时m的值为或.