题目内容
【题目】如图,正方形的顶点、在圆上,若,圆的半径为2,则阴影部分的面积是__________.(结果保留根号和)
【答案】
【解析】
设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出∠AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和∠EOF,最后利用S阴影=S梯形AFCD-S△AOE-S扇形EOF计算即可.
解:设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE
∵四边形ABCD是正方形
∴∠ABF=90°,AD∥BC,BC=CD=AD=cm
∴AF为圆的直径
∵,圆的半径为2,
∴AF=4cm
在Rt△ABF中sin∠AFB=,BF=
∴∠AFB=60°,FC=BC-BF=
∴∠EAF=∠AFB=60°
∴∠EOF=2∠EAF=120°
在Rt△AOG中,OG=sin∠EAF·AO=,AG= cos∠EAF·AO=1cm
根据垂径定理,AE=2AG=2cm
∴S阴影=S梯形AFCD-S△AOE-S扇形EOF
=
=
=
故答案为:.
练习册系列答案
相关题目