题目内容
【题目】已知关于x的一元二次方程.
(1)请判断该方程实数根的情况;
(2)若原方程的两实数根为,,且满足,求p的值.
【答案】(1)总有两个实数根;(2)p=﹣2或4.
【解析】
(1)将一元二次方程转化为一般形式,计算根的判别式,变形,判断符合即可;
(2)根据一元二次方程根与系数关系,得到两根之和,两根之积,代入,解关于p的方程即可.
(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.
∵△=(﹣5)2﹣4(6﹣p2﹣p)
=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2
∵无论p取何值,(2p+1)2≥0,
∴此方程总有两个实数根.
(2)由一元二次方程根与系数关系知:x1+x2=5,x1x2=6﹣p2﹣p
∵x12+x22=3p2+5,∴(x1+x2)2﹣2x1x2=3p2+5,
即52﹣2(6﹣p2﹣p)=3p2+5,∴p2﹣2p﹣8 =0
解得:p=﹣2或4.
∴p=﹣2或4.
练习册系列答案
相关题目