题目内容

【题目】已知AB是⊙O的直径,AB2,点C,点D在⊙O上,CD1,直线ADBC交于点E

(Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数;

(Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数.

【答案】(Ⅰ)∠AEB60°;(Ⅱ)∠AEB120°

【解析】

)如图1,连接OCOD,先证明△OCD为等边三角形得到∠COD60°,利用圆周角定理得到∠CBD30°∠ADB90°,然后利用互余计算出∠AEB的度数;

)如图2,连接OCOD,同理可得∠CBD30°∠ADB90°,然后根据三角形外角性质计算∠AEB的度数.

解:()如图1,连接OCOD

∵CD1OCOD1

∴△OCD为等边三角形,

∴∠COD60°

∵AB为直径,

∴∠ADB90°

∴∠AEB90°∠DBE90°30°60°

)如图2,连接OCOD,同(Ⅰ)理可得∠CBD30°∠ADB90°

∴∠AEB90°+∠DBE90°+30°120°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网