题目内容
【题目】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,
=1.7).
【答案】(1)详见解析;(2)26.5.
【解析】
试题分析:(1)根据平行线的性质和等腰三角形的性质可得∠CDA=∠DAO,∠DAO=∠ADO,即可证得结论.(2)易证∠CDA=∠BAD=∠CAD,可得=
=
,再证明∠DOB=60°,即可得△BOD是等边三角形,由此即可解决问题.
试题解析:证明:(1)∵CD∥AB,
∴∠CDA=∠BAD,
又∵OA=OD,
∴∠ADO=∠BAD,
∴∠ADO=∠CDA,
∴DA平分∠CDO.
(2)如图,连接BD,
∵AB是直径,
∴∠ADB=90°,
∵AC=CD,
∴∠CAD=∠CDA,
又∵CD∥AB,
∴∠CDA=∠BAD,
∴∠CDA=∠BAD=∠CAD,
∴=
=
,
又∵∠AOB=180°,
∴∠DOB=60°,
∵OD=OB,
∴△DOB是等边三角形,
∴BD=OB=AB=6,
∵=
,
∴AC=BD=6,
∵BE切⊙O于B,
∴BE⊥AB,
∴∠DBE=∠ABE﹣∠ABD=30°,
∵CD∥AB,
∴BE⊥CE,
∴DE=BD=3,BE=BD×cos∠DBE=6×
=3
,
∴的长=
=2π,
∴图中阴影部分周长之和为2π+6+2π+3+3=4π+9+3
=4×3.1+9+3×1.7=26.5.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目