题目内容
【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与BD交于点F.
(1)如图1所示,
①求证AE= BD
②求∠AFB (用含α的代数式表示)
(2)将图1中的△ACD绕点C顺时针旋转某个角度(交点F至少在BD、AE中的一条线段上),得到如图2所示的图形,若∠AFB= 150°,请直接写出此时对应的α的大小(不用证明)
【答案】(1)①见解析,②180° -α(2)30°
【解析】
(1)①由∠ACD=∠BCE=α,得到∠ACE=∠DCB=180°,然后得到△ACE≌DCB,即可得到AE=BD;
②由①知△ACE≌DCB,则∠CAF=∠CDF,利用三角形内角和定理,由∠CAF+∠AFB+∠B=180°,∠CDF+∠DCB+∠B=180°,则∠AFB=∠DCB=;
(2)由∠AFB= 150°,则∠EFB=,由∠ACD=∠BCE,得∠ACE=∠DCB,然后得到△ACE≌△DCB,得到∠AEC=∠DBC,则∠BCE=∠EFB=30°.
解:(1)如图1:
①证明:∵∠ACD=∠BCE=α,
∴180°∠ACD=180°∠BCE,
即∠ACE=∠DCB=180°,
∵CA=CD,CB=CE,
∴△ACE≌DCB,
∴AE=DB;
②∵△ACE≌DCB,
∴∠CAF=∠CDF,
由三角形内角和定理,得
∠CAF+∠AFB+∠B=180°,∠CDF+∠DCB+∠B=180°,
∴∠AFB=∠DCB=;
(2)如图2:
∵∠AFB= 150°,
∴∠EFB=,
∵∠ACD=∠BCE,
∴∠ACD+∠DCO=∠BCE+∠DCO,
∴∠ACE=∠DCB,
∵AC=DC,CE=CB,
∴△ACE≌△DCB,
∴∠AEC=∠DBC,
∵∠FOE=∠COB,
∴∠BCE=∠EFB=30°,
∴.