题目内容

如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长交⊙O于K,连接KO,OD.
(1)证明:PC=PD;
(2)若该圆半径为5,CDKO,请求出OC的长.
(1)证明:如图,∵PD=PO,
∴∠1=∠2;
∵CD是⊙O的切线,
∴CD⊥OD.(2分)
∴∠3+∠1=90°;
又∵∠CDP+∠2=90°,
∴∠3=∠CDP.(3分)
∴PC=PD.(4分)

(2)∵CDKO,有∠3=∠POK,
由(1)得,CP=PD=PO,又∠CPD=∠KPO,
∴△CPD≌△OPK
∴CD=OK=5;
在Rt△COD中,OC=
CD2+OD2
=5
2
.(8分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网