题目内容

如图,在梯形ABCD中,ABCD,⊙O为内切圆,E为切点,
(Ⅰ)求∠AOD的度数;
(Ⅱ)若AO=8cm,DO=6cm,求OE的长.
(Ⅰ)∵ABCD,
∴∠BAD+∠ADC=180°;
∵⊙O内切于梯形ABCD,
∴AO平分∠BAD,有∠DAO=
1
2
∠BAD,
DO平分∠ADC,有∠ADO=
1
2
∠ADC,
∴∠DAO+∠ADO=
1
2
(∠BAD+∠ADC)=90°,
∴∠AOD=180°-(∠DAO+∠ADO)=90°;

(Ⅱ)∵在Rt△AOD中,AO=8cm,DO=6cm,
∴由勾股定理,得AD=
AO2+DO2
=10
cm,
∵E为切点,
∴OE⊥AD,则有∠AEO=90°,
∵S△AOD=
1
2
OD•OA=
1
2
AD•OE;
∴OE=
AO•OD
AD
=4.8cm.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网