题目内容

如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于(  )
A.70°B.64°C.62°D.51°

连接OC.
则OC=OB,AC=AB,OA=OA,△AOC≌△AOB.
∴∠CAO=∠BAO.
∵AB是⊙O的切线,
∴OB⊥AB.
∵BD=OB,
∴AB是线段OD的垂直平分线,OA=AD.
∴∠OAB=∠DAB=∠OAC=
1
3
×78°=26°.
∠ADO=180°-∠ABD-∠DAB=180°-90°-26°=64°.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网