题目内容
【题目】如图,在矩形中,,,点是边上的一个动点,将沿折叠,得到.连接、,若为等腰三角形,则的长为_______.
【答案】、、
【解析】
当的B′在矩形的内部时,分三种情形考虑:①DA=DB′.②AD=AB′.③B′A=B′D.当点B′落在矩形的外部时,有一种情形DA=DB′,分别求解即可.
解:如图,过点B′作MN⊥CD于M,交AB于N,
∵四边形ABCD是矩形,
∴AD=BC=13,CD=AB=24,∠ABC=∠BCD=∠CDA=∠DAB=90°,
又∵MN⊥CD,
∴四边形ANMD是矩形,四边形BCMN是矩形,
∴AD=MN=13,AN=DM,MC=BN,
若AD=DB′=13,
∵将△CBE沿CE折叠,得到△CB′E连接AB′,
∴BC=B′C=13,BE=B′E,
∴B′C=B′D,
又∵MN⊥CD,
∴CM=DM=12,
∴B′M=,
∴B′N=13-5=8,
∵B′E2=NE2+B′N2,
∴BE2=64+(12BE)2,
∴BE=;
∵AB′的最小值=ACCB′=,
AB′>AD,
当B′A=B′D时,
∵B′M=B′N,
∴CB′=2B′M,
∴∠B′CM=30°,
∴∠ECB=∠ECB′=30°,
∴BE=CBtan30°=,
如图当点B′在直线CD的上方,AD=DB′时,
同法可知DM=CM=12,MB′=5,
在Rt△ENB′中,则有BE2=(BE12)2+182,
解得BE=,
综上所述,满足条件的BE的值为或或,
故答案为:、、
练习册系列答案
相关题目