题目内容
【题目】如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形△CBD,连接DA并延长,交y轴于点E.
(1)求证:△OBC≌△ABD
(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.
(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?
【答案】(1)证明见解析;(2)在点C的运动过程中,∠CAD的度数不会变化,理由见解析;(3) 当点C运动到(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【解析】
(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
(2)根据等边三角形的性质即可得出;
(3)先根据全等三角形的性质以及等边三角形的性质,求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.
(1)证明:∵△AOB、△CBD都是等边三角形
∴ BO=BA,BC=BD, ∠OBA=∠CBD=600
∴ ∠OBA+∠ABC = ∠CBD+∠ABC
∴ ∠OBC = ∠ABD
∴ △OBC≌△ABD
(2)解:在点C的运动过程中,∠CAD的度数不会变化,理由如下:
∵ △AOB是等边三角形
∴ ∠BOA =∠OAB= 60°
∵ △OBC≌△ABD
∴ ∠BAD =∠BOC= 60°
∴ ∠CAD=1800-∠0AB-∠BAD= 60°
(3)解:∵ A(1,0)
∴ OA=1
∵ ∠EOA= 900,∠EAO=∠CAD= 60°
∴ ∠OEA= 30°
∴ AE=2OA=2
∵ ∠EAC=180°-∠EAO=120°
∴ 当以A,E,C为顶点的三角形是等腰三角形时,AE、AC是腰
∴ AE=AC=2
∴ OC=OA+AC=3
∴ 当点C运动到(3,0)时,以A,E,C为顶点的三角形是等腰三角形.