题目内容
【题目】如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:
(1)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动_____个单位;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,运动t秒钟过后:
①点A、B、C表示的数分别是_____、_____、_____ (用含t的代数式表示);
②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2.试问:d1﹣d2的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出d1﹣d2值.
【答案】 3或7 ﹣4﹣t ﹣2+2t ﹣2+2t
【解析】试题分析:(1)由AB=2,结合数轴即可得出点C向左移动的距离;
(2)①结合路程=时间×速度写出答案;
②先求出d1=3t+5,d2=3t+2,从而得出d1﹣d2=2.
试题解析:(1)有数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,
所以当C、B两点的距离与A、B两点的距离相等时,需将点C向左移动3个或7个单位;
故答案是:3或7;
(2)①点A表示的数是﹣4﹣t;点B表示的数是﹣2+2t;点C所表示的数是3+5t.
故答案是:﹣4﹣t;﹣2+2t;3+5t;
②d1﹣d2的值不随着时间t的变化而改变,其值是3,理由如下:
∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,
∴d1=3t+5,d2=3t+2,
∴d1﹣d2=(3t+5)﹣(3t+2)=3.
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.两数和的完全平方公式 |
D.两数差的完全平方公式 |
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.