题目内容
【题目】在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,
(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:
m | n | m+n | f |
1 | 2 | 3 | 2 |
1 | 3 | 4 | 3 |
2 | 3 | 5 | 4 |
2 | 5 | 7 | 6 |
3 | 4 | 7 | 6 |
猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是 (不需要证明);
(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.
【答案】(1)f=m+n-1;(2)上述结论不成立,图形见解析.
【解析】试题分析:(1)通过观察即可得出当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式,
(2)当m、n不互质时,画出图即可验证猜想的关系式不成立.
试题解析:(1)f=m+n-1;
(2)当m、n不互质时,上述结论不成立,如图2×4:
练习册系列答案
相关题目